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Abstract: Screening of our internal compound collection for
inhibitors of the transforming growth factor â1 (TGF-â1) type
I receptor (ALK5) identified several hits. Optimization of the
dihydropyrroloimidazole hit 2 by introduction of a 2-pyridine
and 3,4-methylenedioxyphenyl group gave 7, a selective ALK5
inhibitor. With this information, optimization of the triarylimi-
dazole hit 8 gave the selective inhibitor 14, which inhibits
TGF-â1-induced fibronectin mRNA formation while displaying
no measurable cytotoxicity in the 48 h XTT assay.

Progressive fibrosis in the kidney, liver, heart, lung,
bone marrow, and skin is a major cause of morbidity
and mortality. A central player in this progressive
fibrosis is transforming growth factor â1 (TGF-â1),
which enhances extracellular matrix production by both
increasing the transcription of matrix proteins, e.g.,
fibronectin and collagen, and inhibiting enzymes re-
sponsible for matrix degradation.1 TGF-â1 signals
through two highly conserved single transmembrane
receptors with intracellular serine/threonine kinase
domains.2 Upon TGF-â1 binding, the type II receptor
phosphorylates threonine residues in the GS domain of
the ligand-occupied type I receptor or activin-like kinase
(ALK5), which results in the activation of the type I
receptors. The TGF-â type I receptor in turn phos-
phorylates Smad2 and Smad3 proteins, which trans-
locate to the nucleus and mediate intracellular signal-
ing. We propose that inhibition of ALK5 phosphorylation
of Smad3 will reduce TGF-â1 induced extracellular
matrix production.

To identify inhibitors of the ALK5 kinase, a flash-
plate-based assay was developed with GST-tagged
ALK5 as the kinase and GST-tagged full-length Smad3
as the immobilized substrate.3 Screening of our internal
compound collection for inhibitors of ALK5 resulted in
the identification of several substituted imidazole in-
hibitors that were originally developed as inhibitors of
p38 kinase.4 Although these hits are good inhibitors of
ALK5, they are in general much better inhibitors of p38.
The substituted imidazole hits contain a pyridine ring
that includes a 4′-nitrogen that is involved in a required
hydrogen bond to the ATP site of p38.5,6 An inhibitor,
SKF-104365 (1), that contained a 2-pyridyl substituent
was also identified in the screen. SKF-104365 (1) is a
modest, ATP-competitive7 inhibitor of ALK5 that does
not inhibit p38. Although the corresponding carbon
analogue 2 is also a selective inhibitor of ALK5, ana-
logues containing either a 3- or 4-pyridyl substitution,
e.g., 3 and 4, lack ALK5 inhibitory activity. The lack of
a 4′-nitrogen in 1 and 2, which makes an essential
hydrogen bonding interaction in p38 as well as other
related kinases,5,6 suggests that there may be an
alternative binding site available to ALK5 inhibitors
involving the 2′-pyridine that is not accessible in p38.
In an attempt to increase the potency of these initial
hits and to explore this novel pharmacophore, analogues
that varied in the 2-phenyl substituent of 2 were
synthesized utilizing the Suzuki coupling8 of aryl bo-
ronic acids to the 2-bromoimidazole 5 (Scheme 1).
Although the 4′-methoxyphenyl analogue 6 retains
ALK5 activity, the 3,4-methylenedioxyphenyl analogue
7 displays significantly improved ALK5 inhibition (Table
1). This ALK5 inhibition translates into significant
cellular activity. The inhibitor 7 inhibits TGF-â1-
induced fibronectin (FN) mRNA (IC50 ) 0.50 uM) in
A498 cells.9

Taking these results into consideration, we initiated
the exploration of the related triarylimidazole template.
The screening hit, SB-202620 (8), that contains a
4-pyridyl substituent and is an essentially equipotent
inhibitor of both ALK5 and p38 (Table 2) was the
starting point for this lead optimization effort. A key
feature of 8 that contributes to ALK5 inhibitory activity
is the 4′-carboxyphenyl substituent because the corre-
sponding sulfoxide-containing analogue, SB-20358010

(9), displays both significantly reduced ALK5 activity
and improved p38 inhibition. Replacement of the 4-py-
ridyl with the 2-pyridyl substituent derived from the
dihydropyrroloimidazole series above gave analogue 10
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Scheme 1. Synthesis of Dihydropyrroloimidazole
Template

999J. Med. Chem. 2002, 45, 999-1001

10.1021/jm010493y CCC: $22.00 © 2002 American Chemical Society
Published on Web 01/30/2002



(Scheme 2). Although 10 has reduced ALK5 inhibitory
activity, it does not inhibit p38. As in the dihydro-
pyrroloimidazole series, introduction of a 3,4-methyl-
enedioxyphenyl ring, analogue 11, significantly in-
creased ALK5 activity without affecting selectivity vs
p38. Although 11 is a better inhibitor than 7 in the
ALK5 kinase assay (Table 2), 11 only exhibited modest
activity in the cellular assay (IC50 ≈ 4 uM, TGF-â1-

induced FN mRNA).9 This lower than expected cellular
activity is most likely due to the presence of the
carboxylic acid, a functional group that is known to limit
cellular permeability. A series of related analogues were
subsequently investigated that replaced the ionizable
carboxyl group with various substituents capable of
H-bond donor or acceptor interactions with the kinase.
Analogue 12, which lacks an H-bond-donating carboxylic
acid, displays reduced ALK-5 inhibitory activity, while
analogues 13 and 14 with carboxylic acid replacements
that allow for H-bond donation retain the ALK-5 inhibi-
tion exhibited by 11. The carboxamide-containing ana-
logue, 14, which is the most potent inhibitor of the
series,7 exhibits good cellular activity, inhibiting TGF-
â1-induced (FN) mRNA formation in A498 cells with
IC50 ) 0.05 uM.9 To further evaluate the cellular activity
of 14, TGF-â1-induced nuclear localization of Smad3
was examined. TGF-â1 causes the translocation of Smad
proteins from the cytoplasm to the nucleus.11 The Smad
proteins were visualized in A498 cells by immuno-
fluorescent antibodies raised against Smad3. Inhibitor
14 significantly reduced the TGF-â-induced nuclear
accumulation of Smad proteins with an IC50 value of
0.04 µM. Of equal importance, 14 exhibits no measur-
able cytotoxicity in the 48 h XTT assay (LD50 > 30
uM).12

In conclusion, novel inhibitors of ALK5 have been
identified that exhibit no measurable inhibition for p38
kinase, allowing for differentiation of the respective
activation pathways. This class of inhibitors lacks the
4-pyridyl characteristic of related p38 inhibitors, sug-
gesting the identification of a novel binding mode for
these ALK5 inhibitors. In addition, 14 has been shown
to inhibit TGF-â1-stimulated matrix protein mRNA
without measurable cytotoxicity. These inhibitors are
currently being used as pharmacological tools to exam-
ine various aspects of the TGF-â1 signaling pathway.

Supporting Information Available: Representative ex-
perimental procedures and spectral data for the preparation
and characterization of the dihydropyrroloimidazole and tri-
arylimidazole inhibitors are presented. This material is avail-
able free of charge via the Internet at http://pubs.acs.org.
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Scheme 2. Synthesis of Triarylimidazole Template
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